
F I N A L  REPORT 

on 

INVESTIGATION OF I N S T A B I L I T Y ,  DYNAMIC FORCES, 
AND EFFECT OF DYNAMIC LOADING ON STRENGTH OF 
CAGES FOR THE BEARINGS I N  THE HIGH PRESSURE 

OXYGEN TURBOPUMPS FOR THE SPACE SHUTTLE 
MAIN ENGINE 

(Contract NAS8-36192, T a s k  No. 117) 

prepared f o r  

NATIONAL AERONAUTICS AND SPACE 
ADMINISTRATION 

MARSHALL SPACE FLIGHT CENTER, AL 
GEORGE C. MARSHALL SPACE FL IGHT CENTER 

November  22, 1985 

K. F. D u f r a n e ,  J. W. K a n n e l ,  T. L. M e r r i m a n ,  
and A. R. R o s e n f i e l d  

BATTE L L E  
C o l u m b u s  D i  v i  sion 
505 K i n g  A v e n u e  

Co lumbus,  Ohio 43201 



TABLE OF CONTENTS 

Page 

INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1 

SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3 

CONCLUSIONS AND RECOMMENDATIONS . . . . . . . . . . . . . . . . . .  5 

CAGE STABILITY ANALYSIS . . . . . . . . . . . . . . . . . . . . . .  6 

Analyses Background . . . . . . . . . . . . . . . . . . . . . .  6 

Ball-Race In te rac t i ons  . . . . . . . . . . . . . . . . . .  6 

Cage Dynamics . . . . . . . . . . . . . . . . . . . . . .  6 

New Cage Parameters Considered i n  This Task . . . . . . .  7 

Base Case w i t h  Updated Input  Parameters . . . . . . . . . . . .  7 

E f f e c t  o f  L i q u i d  Oxygen Coolant Flow . . . . . . . . . . . . .  13 

The E f f e c t  o f  Ball-Race Trac t ion  and F r i c t i o n  
Coef f ic ient  on Cage S t a b i l i t y  . . . . . . . . . . . . . . . . .  14 

Trac t ion  a t  the  Ball-Race In te r face  o f  L i q u i d  
Lubr icated Bearings . . . . . . . . . . . . . . . . . . .  14 

Extension t o  S o l i d  F i l m  Lubr icated Bearings . . . . . . .  15 

S o l i d  F i l m  Trac t ion  i n  t h e  HPOTP Bearing . . . . . . . . .  19 

Cage S t a b i l i t y  Pred ic t ions  w i th  Inputs  from 
the  S o l i d  F i lm  Trac t ion  Analysis . . . . . . . . . . . . .  24 

The E f f e c t  o f  Shaf t  Speed on Caqe S t a b i l i t v  . . . . . . . .  29 

Ball-Cage Forces During I n s t a b i l i t y  . . . . . . . . . . . . . .  29 

Frequencies o f  Cage Motion . . . . . . . . . . . . . . . . . .  30 

Ball-Cage In te rac t i ons  During Stable Operation . . . . . . . .  31 

Effect o f  Radial Load . . . . . . . . . . . . . . . . . .  31 

E f f e c t  o f  Worn B a l l s  . . . . . . . . . . . . . . . . . . .  35 

EFFECT OF CYCLIC LOADING ON CAGE STRENGTH . . . . . . . . . . . . .  39 

Cage Loading Procedure . . . . . . . . . . . . . . . . . . . .  39 

i 



TABLE OF CONTENTS (Continued) 

Page 

41 Results of  Cyclic Loading Tests . . . . . . . . . . . . . . . .  
MEASUREMENT OF POISSON'S RATIO . . . . . . . . . . . . . . . . . . .  44 

MEASURING UNITS . . . . . . . . . . . . . . . . . . . . . . . . . .  44 

REFERENCES 45 . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

LIST OF FIGURES 

Figure 1.  

Figure 2 .  

Alpha (Cage Rotating About I t s  Center of Mass) 

Beta (Cage Center o f  Mass Rotating About the 
Bearing Geometric Center) For Nominal 

For Nominal Operating Conditions . . . . . . . . . . . .  9 

Operating Conditions . . . . . . . . . . . . . . . . . .  10 

Figure 3.  Coordinate System f o r  Cage-Ball Locations . . . . . . . .  11 

Figure 4. Nomenclature Ball-Race Contact . . . . . . . . . . . . .  17 

Figure 5. Theoretical  Traction S l i p  Curve for 
Various Coatings . . . . . . . . . . . . . . . . . . . .  21 

Figure 6. Alpha (Cage Rotating About I t s  Center of Mass) 
f o r  Simulation of PTFE-Steel F i l m  and Ball-Race 
F r i c t ion  = 0.1 . . . . . . . . . . . . . . . . . . . . .  25 

Figure 7 .  Alpha (Cage Rotating About I t s  Center of Mass) 
f o r  Simulation of  MoS2-Steel F i l m  and Ball-Race 
F r i c t ion  = 0.1 . . . . . . . . . . . . . . . . . . . . .  26 

Figure 8. Alpha (Cage Rotating About I t s  Center of Mass) 
for Simulation of Steel  -Steel In te r face  and 
Ball-Race Fr ic t ion  = 0.1. . . . . . . . . . . . . . . . .  27 

Figure 9. Alpha (Cage Rotating About I t s  Center of Mass) 
For Simulation of Steel  -Steel In t e r f ace  and 
Ball-Race Fr ic t ion  = 0.2 . . . . . . . . . . . . . . . .  28 

Figure 10. Bearing Nomenclature . . . . . . . . . . . . . . . . . .  32 

Figure 11. Maximum Ball-Cage Forces, Predicted by BASDAP, 
Under S tab le  Operating Conditions,  f o r  Various 
Radial Loads . . . . . . . . . . . . . . . . . . . . . .  34 

i i  



LIST OF FIGURES (Continued) 

Page 

Figure 12. Ball Excursions a s  Predicted by BASDAP 
f o r  Nominal Operating Conditions . . . . . . . . . . . .  36 

Figure 13. Scenario of Forces on a Ball That Has 
Dropped out  of Contact Due t o  Wear . . . . . . . . . . .  38 

Figure 14. Experimental Arrangement for Evaluating the  
Effec t  o f  Cyclic Loading on Sections of Cage 
From the  SSME HPOTP Bearings . . . . . . . . . . . . . .  

LIST OF TABLES 

Table 1 .  Nominal Bearing Parameters f o r  NASA Bearing 
007955, High Pressure Oxygen Turbopump, 
Turbine End . . . . . . . . . . . . . . . . . . . . . . .  12 

Table 2 .  Summary of Contact Pressures on Sol id  Films . . . . . . .  20 

Table 3. Summary Effec t ive  Viscosity Computation . . . . . . . . .  22 

Table 4. BASDAP Cage S t a b i l i t y  Predict ions f o r  Various 
Viscos i t ies  a t  the Ball-Race In te r face  . . . . . . . . .  29 

Table 5 .  Range of Frequencies of Cage Motion D u r i n g  
I n s t a b i l i t i e s  . . . . . . . . . . . . . . . . . . . . . .  30 

Table 6.  Bearing Parameters Calculated by BASDAP 
Showing E f f e c t  o f  Radia l  Load Ax ia l  Load = 4450 N 
(1000 1 b ) ,  Shaft  Speed = 31000 rpm . . . . . . . . . . .  33 

Table 7.  Bearing Parameters Calculated by BASDAP Showing 
Effec t  of One 12.4 mm (0.488 i n . )  Diameter Ball 
a t  Posi t ion One. . . . . . . . . . . . . . . . . . . . .  37 

Table 8. Results o f  Cyclic Tensi le  Load Tests on Cage 
Specimens a t  -196 (-320 F )  . . . . . . . . . . . . . . .  42 

APPENDIX A 

Appendix A. Analysis of Traction Forces i n  a Precis ion 
Traction Drive . . . . . . . . . . . . . . . . . . . .  A-1 

i i i  



FINAL REPORT 

on 

INVESTIGATION OF INSTABILITY, DYNAMIC FORCES, 
AND EFFECT OF DYNAMIC LOADING ON STRENGTH OF 
CAGES FOR THE BEARINGS IN THE HIGH PRESSURE 
OXYGEN TURBOPUMPS FOR THE SPACE SHUTTLE 

MAIN ENGINE 
(Contract NAS8-36192, Task No. 117) 

prepared for 

NATIONAL AERONAUTICS AND SPACE 
ADMINI STRATI ON 

George C. Marshall Space Flight Center 
Marshall Space Flight Center, A1 

November 22, 1985 

INTRODUCTION 

While the Space Shuttle main engine (SSME) has had demon- 
strated success as a reusable power source, the bearings in the high 
pressure oxygen turbopumps (HPOTP) continue to limit the service life 
of the SSME to less than the desired goal of 27,000 seconds involving 
55 starts between overhauls. 
output  have also placed increased demands on the HPOTP bearings and 
have contributed to the life problem. 
NASA in identifying means for extending bearing life, Battelle has 
been conducting various related studies through a Task Order Agree- 
ment. 
of the cage in the HPOTP bearings, frequencies and forces associated 
with the instabilities, and the effect of cyclic forces on the strength 
of the cage material. 

Moves toward increasing the engine power 

In a continuing effort to assist 

The current task was directed toward analyzing the instability 
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Specific topics to be addressed in this task were: 

Ball/cage loadings as a function of radial load 
and misalignment 
Critical ball size variation to promote high 
ball-cage loads 
Critical friction conditions to promote cage 
i nstab i 1 i ty 
Range of frequencies of cage motion during instabilities 
Ball/cage forces as a result of cage instabilities 
Effect of cyclic loading on cage strength 
Poisson's ratio for Armalon cage material 
Recornendations for improving SSME bearing performance 
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Calculations were made of the magnitude of the bal l/cage 
forces resulting from combined radial and axial loads. With an axial 
load of 4400 N (1000 lbs), the ball/cage pocket clearance is suffi- 
cient to accommodate the ball excursions produced by ball speed vari- 
ation with radial loads to 3600 N (800 lbs). 
N (800 lbs), cyclic bitl/cage forces are developed, the magnitude 
of which depend on the ball/race coefficient of friction. With a 
coefficient of friction of 0.2, the ball/cage forces are approximately 
220 N (50 lbs). Although loads of this magnitude are well below an 
experimentally determined cage working strength o f  1300 N (300 lbs), 
they may be sufficient to cause cage wear. On this basis, cage fail- 
ures from overloading would appear to be the result of cage instabili- 
ties or excessive bearing overloads rather than from loads applied 
in normal operation. 

ing. 
by the surrounding unworn balls. 
rapidly with wear; a radial wear of 0.025 mm (0.001 in.) is sufficient 
to remove all of its portion of the applied load. 
gal loading continues to maintain a high contact pressure with the 
outer race, which is a likely significant factor in continuing the 
wear process for the unloaded ball. An oversized ball (presumably 
from wear of the other balls) carries a proportionally higher load. 
Resulting ball/cage forces are not excessive if the oversized ball 
remains within 6.3pm (250pin.) of the complement. 
basis, a single oversized ball is not likely to exist for extended 
times because the higher loads and associated wear would be expected 
to reduce its size to that of the complement. 

ral is only marginally stable, primarly because of the marginal ball/race 
lubrication conditions in comparison with conventionally lubricated 
bearings. The shear modulus and coefficient of friction at the ball/race 

With loads beyond 3600 

Ball wear was found to be a minor factor in ball/cage load- 
Wear on a single ball causes the applied loads to be carried 

The load on single ball decreases 

However, centrifu- 

On a practical 

Analyses of cage stability have shown that the cage in gene- 



4 

interface are both important factors in cage stability. 
associated with PTFE films, or lower, result in stable cage operation. 
As the shear moduli increases at the interface to that associated 
with MoS2 solid lubricants or steel-on-steel, the cage stability de- 
creases. The impingement of liquid oxygen on the cage also influenced 
stability. The constant force from the impingement in the direction 
of rotation tended to promote stability. The frequency of cage oscil- 
lations increase with increasing instability. Oscillating frequencies 
to 33,000 Hz were predicted. Cage forces resulting from accelerations 
associated with such high frequency oscillations were estimated to 
exceed the cage compressive strength by a factor of two. 

loading on cage strength. 
mately 1300 N (300 lbs) was found to be the likely maximum. 
loads, such as 1800 N (400 lbs), caused a decrease in cage tensile 
strength after the 125,000-cycle testing period. 
in compression was found to be highly dependent upon the direction 
of the fiberglass plies. At room temperature the value was 0.15 with 
the plies and 0.68 across the plies. At -196 C (-321 F), the value 
with the plies was 0.20 (a bonding failure with the attached strain 
gage prevented obtaining a reading across the plies). 

Shear moduli 

- Experiments were performed to determine the effect o f  cyclic 
A long-term working tensile load of approxi- 

Higher 

Poisson's ratio 
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CONCLUSIONS AND RECOMMENDATIONS 

The results of the analyses conducted in this task have 
again demonstrated the critical need for improved lubrication in the 
HPOTP bearings. Lubricant films with low shear strength and low fric- 
tion coefficients promote cage stability and decrease ball/cage forces 
during marginal operating conditions. Such lubrication also minimizes 
ball and race wear, which has been the principal longevity problem 
with these bearings. As the bal l/race lubrication deteriorates, cage 
instability with high frequency oscillations and associated ball/cage 
loads occurs. A general performance deterioration follows with ball 
and race wear, compromised geometry, and increased 1 ikel ihood of cage 
instability. 
HPOTP bearings, such as with transfer films, are clearly warranted. 

ball/cage loads has identified a radial load of 3600 N (800 lbs) as 
the maximum for the current clearance of the balls and cage pockets. 
Elongating the cage pockets will help to reduce these loads if axial 
loads of greater than 3600 N (800 lbs) are to be encountered. 

rotation was found to enhance cage stability. 
further increases in the applied force in the cage rotating direction 
may be helpful for promoting stability. Because of the uncertainties 
in the knowledge of the fluid coupling forces and the ball/race trac- 
tion conditions, such possible improvements will be best explored 
experimentally. However, the influence of the liquid oxygen impinge- 
ment is secondary compared with the influence of the ball/race lubri- 
cation, and only corresponding second-order improvements are to 
be expected. 

Efforts to improve the long-term lubrication of the 

The analysis of the effect of combined bearing loads on 

Liquid oxygen impinging on the cage in the direction of 
This suggests that 



6 

CAGE STAB I LITY ANALYSIS 

Analyses Backqround 

Ball-Race In te rac t i ons  

External  loading appl ied t o  an angular contact  bearing devel- 
ops forces a t  t he  ba l l - race  in ter faces.  These forces, along w i t h  
race geometry, speed, and cen t r i f uga l  e f fects ,  produce the ba l l - race  
contact  angles, ba l l - race  contact  pressures, l u b r i c a n t  f i l m  thickness 
(between b a l l s  and race), and t o  some extent, the spin and r o l l  motions 
o f  the b a l l .  
bas is  f o r  the c l a s s i c a l  A. B. Jones' theory (1). 

r a t e s  f o r  the ba l l - race  contact  regions. 
and a x i a l  de f l ec t i ons  o f  the bearing are assumed. 
de f l ec t i ons  i n  conjunct ion w i t h  the spr ing rates, r a d i a l  and a x i a l  
loads are computed and compared w i t h  the design bear ing loads. 
r a d i a l  and a x i a l  de f l ec t i ons  are adjusted (by a computer nest ing pro- 
cedure) t o  achieve the  co r rec t  loads f o r  s t a t i c  condi t ions.  
ga l  force effects are determined by adjust ing the inner and outer 
race contact  angles t o  achieve loading equi l ibr ium.  

The analysis o f  these ba l l - race  i n te rac t i ons  was the 

The Jones' approach involves f i r s t  computing the spr ing 
Next, values f o r  the r a d i a l  

Using these assumed 

The 

Cen t r i f u -  

Cage Dynamics 

Under normal operat ion o f  most bearings, t he  cage can be 
The motion o f  t he  cage considered t o  have s i x  degrees o f  freedom. 

i s  achieved as a r e s u l t  o f  the b a l l s  d r i v i n g  the cage o r  the cage 
d r i v i n g  the  b a l l s .  The s t a b i l i t y  condi t ions o f  t he  cage are a r e s u l t  
o f  the i n t e r a c t i o n s  dur ing bal l -cage impacts. As a r e s u l t  o f  these 
impacts, t he  k i n e t i c  energy o f  t he  cage i s  al tered. For example, 
any s l i p  o f  the b a l l  on the race a t  impact w i l l  reduce the energy 
o f  t he  cage. 
cage dur ing impact a l t e r s  the  cage energy. Under some condit ions, 

Also, the f r i c t i o n  coupl ing o f  the r o l l i n g  b a l l  t o  the  
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the energy of the cage will continue to increase until an instability 
occurs. 
and the cage will be quite stable. 
is to sort out these stable or unstable conditions. 

Under other conditions, the energy of the cage is absorbed 
The purpose of the BASDAP model 

The BASDAP calculations are conducted in two steps: 

Step 1: The quasi-dynamic stresses of the type discussed 
under "Ball-Race Interactions of the Bearing" are 
computed. 

Step 2. The cage dynamic motions are computed using 
the ball-race forces and traction constants 
as inputs. 

Cage stability can be accessed by analyzing plots of cage 
angle as a function of time. 
cage angle decreases with time, cage stability is implied. 
if the frequency of oscillation increases, the cage is unstable. 

If the frequency of oscillation of the 
Conversely, 

New Cage Parameters Considered in This Task 

Two new variables were considered in this task with regard 
to cage stability: the force on the cage from an impinging coolant 
flow of liquid oxygen and the influence of the ball-race friction 
coefficient. 
interfaces were considered only as parameters in a previous cage sta- 
bility study (2). 

The friction conditions at the ball-cage and cage-race 

Base Case with Updated Input Parameters 

The computer analysis included several updated input parame- 
ters. Table 1 shows the current bearing data used in the analyses. 
Two points to notice are: 



8 

(1) The new seals developed for the bearing are reported 
to be stiff enough to support some radial load. Accord- 
ingly, the radial load used in the analysis has been 
reduced to 1330N (300 lbs) (3). 

The Armalon cage material properties, primarily the 
modulus, reflect new data from bearing materials stud- 
ies in May, 1985, (4), as well as Rocketdyne data. 
Traction data from the liquid nitrogen elastohydrody- 
namic film studies has also been added to the bearing 
analysis (5). Using these data, along with solid-film 
work that has been done at Battelle on another govern- 
ment project, engineering estimates have been made 
of the interface friction conditions. 
of the cage stability predictions is directly dependent 
upon this limited knowledge of the interface friction 
conditions. 

The accuracy 

Figures 1 and 2 are plots of the bearing cage behavior using 
the parameters in Table 1. 
used to define the cage location parameters for Figures 1 and 2. 
Figure 3 shows that the angle B (beta) i s  the rotational angle of 
the center of mass of the cage about the geometric center of the bear- 
ing. 
its center of mass. t i  (alphadot) and ti (betadot) are the time deriva- 
tives of alpha and beta, respectively. From examination of plots 
of the above parameters the cage stability can be described as margi- 
nal at best. 
as it would in a very stable bearing. The predictions also show that 
the oscillations do not build up into a complete instability, which 
is somewhat encouraging. However, other combinations of operating 
conditions and cage dimensions were identified in the March, 1984, 
task which could drive the cage unstable (2). 

Figure 3 indicates the coordinate system 

The angle a (alpha) is the rotational angle of the cage about 

Figure 1 indicates the cage motion does not dampen out 
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TABLE 1 .  NOMINAL BEARING PARAMETERS FOR NASA BEARING 007955, 
HIGH PRESSURE OXYGEN TURBOPUMP, TURBINE E N D  

_ _ _ ~ ~  ~~~ ~~ 

Parameter Units Nominal Value 

Number of bal l  s 
Ball rad ius  
Pi tch radius  
Design contact  angle 
Ball-cage rad ia l  c learance 
Cage-race rad ia l  c learance 
Outer race curvature  
Inner race curvature  
Axial load 
Radial load 
Inner race speed 
Cage-race f r i c t i o n  
Ball -cage f r i c t i o n  
Ball - race f r i c t i o n  
Base v i scos i ty  
Viscosi ty  under contac t  
Pressure v i scos i ty  c o e f f i c i e n t  
Operating temperature 
Lubricant  s p e c i f i c  grav i ty  rad ia l  
Ball modulus 
Race modulus 
Cage compressive modulus 

-- 
mm ( inch)  
mm ( inch)  
rad/degrees 
mm ( inch )  
mm ( inch )  
-- 
-- 
N ( 1 b )  
N ( 1 b )  
RPM 
-- 
-- 
-- 
C P  

C P  

1/Pascal ( l / p s i )  
C 

Pa ( p s i )  
Pa (psi)  
Pa ( p s i )  

-- 

n 

13 
6.35 (0.250) 

40.51 (1.595) 
0.36/20.5 
0.3175 (0.0125) 
0.127 (0.005) 
0.53 
0.53 

4450 (1000) 
1330 (300) 

31 000 
0.13 
0.30 
0.10 
1 
0.25 l o 7  
0.1 x 10-l0 (0.1 x 

-320 
1.14 
2.0 (2.9 l o 7 )  
2.0 ( 2 . 9 . x  l o7 )  
1.1 x fOlo (1.6 x l o 6 )  

Cage mass gm ( l b  - s e c L / i n . )  29.78 (1.73 x 
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Effect of Liquid Oxygen Coolant Flow 

The influence of the coolant flow of liquid oxygen on the 
bearing stability was considered by introducing a constant tangential 
force on the bearing cage into the computer model. The magnitude 
of the force expected as a result of a 2.11 kg/s (4.65 lb/sec) LOX 
flow was provided in literature from Rocketdyne and corresponds to 
a partial transfer of the fluid's momentum to the cage. Cases were 
run for coolant flows entering at rotational speeds both faster and 
slower than the cage speed. The results from plots such as Figures 
1 and 2 are sumnarized below. 

Tangential Force From 
LOX Coolant Flow Cage Stability 

N 
29 
15 
0 

-15 
-29 

Stable 
Marginally Stable 
Marginally Stable 
Stable 
Marginally Stable 

The following definitions were used to interpret the graphs: 

a 

0 

0 

Completely unstable - high frequency oscillation, 
Marginally unstable - occasional osci 1 lation bui Id-up, 
Marginally stable - oscillations do not completely 
decay, but the cage does not go into high frequency 
oscillation, 
Stable - frequency and amplitude of oscillation decrease 
with time. 

0 

The LOX coolant jet shows a marked effect on stability. The force 
from this jet stabilized the cage motion when applied in the direction 
of bearing rotation. Applying the LOX jet force in a direction oppos- 
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ing the cage rotation caused a seemingly anomalous prediction by the 
BASDAP program. 
motion, but a larger negative force produced marginally stable behav- 
ior. 
be warranted. 

A small negative LOX jet force stabilized the cage 

In view of these sensitivities, experimental verification may 

The Effect of Ball-Race Traction and 
Friction Coefficient on Caqe Stability 

Traction at the Bal l-Race Interface of Liquid 
Lubricated Bearings 

In cage-dynamics theories the balls are normally assumed 
When the cage impacts to be in lubricated contact with the races. 

the balls, the balls slip relative to the races. The reaction force 
developed by the balls is related to the slip rate imposed by the 
cage impact. 
cosity, or: 

The force is computed by a form of Newton's law of vis- 

fi=pE- dA 

where 

A is the contact area 
p 

h is the thickness of the lubricant. 

is the viscosity of the lubricant 
A V  is the slip velocity, and 

If h and A V  are assumed to be independent of A, equation (1) can be 
writ ten : 

A V  - 
F~ - 'mu 
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where Cmu is a constant related to lubricant and geometry. 

Equation 2 is analogous to a dashpot equation in a spring- 
mass vibration problem. 
be the energy absorption by the ball-race interface. In bearings 
where Cmu is very large, the cage motions tend to be unstable. 
bearings where Cmu is small, the cage motions tend to be dampened 
by the ball slippage and the cage motions tend to be stable. 

average viscosity (u ) as: 

The larger the value of Cmu the less will 

In 

Equation 3 could be expressed in terms of a contact zone 

w 
- nab c - -  mu h 'avg' (4 )  

where a and b are the dimensions of the ballhace contact region. 

The average viscosity can be inferred from traction data 
for conditions similar to the conditions in a bearing. 
Equations (2) and (4) results in: 

Combining 

- FT h 
'avg Av n a b .  

Extension to Solid Film Lubricated Bearinss 

If a rolling element bearing is unlubricated the film thick- 
ness term, h, tends to zero and Cmu becomes very large. For condi- 
tions involving thin or non-existent lubricant films, bearing life 
and the cage stability conditions become heavily dependent on solid 
surface layers on the balls and races. Three types o f  surface layers are: 

0 Oxide films, 
0 

0 

Pre-coated films such as sputtered MoS2 layers, 
Transfer films from the bearing cage. 
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The extent of any of these three types of films existent in the bear- 
ing at any time is less well defined than in the case of films in 
a liquid lubricated bearing. Characterizing the traction-slip behav- 
ior of solid films is therefore more difficult than in the case of 
liquid films. 

gential deflection of the interface between the ball and race (Figure 4). 
When the cage impacts a ball, the ball translational speed increases 
relative to the race. As a point on the surface of the race passes 
through contact, the surface is stretched as a result of the ball- 
race velocity differential. The extent of elastic deflection, € ¶  

can be written: 

The traction in a solid film is related to the elastic tan- 

where 

E is the surface deflection 
AV is the differential velocity between ball and races 
v is the velocity of the race, and 
x is the distance from the inlet edge. 

The local tractive force associated with ball-race slippage 
when a solid or liquid film is present can be written: 

- c T =  E ,  

where 

C is a matrix of influence coefficients 
F are point-tractions along the surface 
i? are the deformations given by Equation (6). 

- 

(7 )  
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FIGURE 4. NOMENCLATURE BALL RACE CONTACT 
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For the case of no surface films, the matrix coefficient can be written: 

In Irl, 
- 4(  1 -v2 )  

ITE cij - - 

where 

Cij are the matrix coefficients 
E is Young's modulus 

is Poisson's ratio 
r i s  the distance between the point traction load 

and the def ormat i on 

Equation 7 is solved by dividing the interface into a dis- 
crete number of steps, such as 21, and writing 21 equations for point 
loads in terms of the known deformations. Equation 7 i s  solved for 
the point forces, which are the product of the point shear stresses 
times AX. The one limitation applied to the computation is that: 

where 

T is shear stress 
f is the friction coefficient 
p is pressure. 

When Equation 9 is violated the shear stress is given by: 

An equation similar to Equation 8 can be written for a solid film 
on the race surface (see Equation 5 of the paper in Appendix A). 
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Solid Film Traction in the HPOTP Bearing 

A Battelle computer program ATCON (Analysis of Traction 
CONtact) has been used to evaluate the traction forces in the HPOTP 
bearing configuration. Typical contact conditions are: 

= 1.92 GPa (279,000 psi) PO 
a = 1.46 mn (0.0576 in.) 
b = 0.25 mn (0.0099 in.) 

ATCON is based on line contact theory (a -+ -1. The value of the rela- 
tive radius R was adjusted to yield values of po and b which were 
similar to those of the bearing. For the case of no solid film: 

R = 7.62 mn (0.3 in.) 
= 1.9 GPa (277,000 psi) 

b = 0.254 mn (0.01 in.) 
w = 480 N/m (4,280 lb/in.). 

PO 

Table 2 sumnarizes the stress conditions associated with soft surface 
films. The value of b was an input condition and was adjusted to 
yield approximately the same load for each condition. 

solid film conditions and two levels of friction coefficient. The 
traction coefficient is the level of traction divided by the applied 
load. The most significant aspect of the curve is the slope near 
zero slip, since this reflects the traction resulting in small slip. 
At larger values of AV/V the traction coefficient approaches the coef- 
ficient of friction for pure sliding. 
ball radius variation would cause a slippage of the interfaces, or, 

Typical traction data are given in Figure 5 for the various 

In a bearing, only ball-to- 

AV/V = AR/R,  

I 
I 
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TABLE 2. SUMMARY OF CONTACT PRESSURES ON SOLID FILMS 

Load Y b 

480 N/m 1 200 GPa 1.9 GPa 0.254 mn 
481 N/m 0.01 2 GPa 1.69 GPa 0.305 mn 
475 N/m 0.004 0.8 GPa 1.51 GPa 0.348 mn 
471 N/m 0.002 0.4 GPa 1.35 GPa 0.394 mn 
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TABLE 3. SUMMARY EFFECTIVE VISCOSITY COMPUTATIONS 

Case f Y CT( V/  AV ) av e (CP) Simu 1 at i on 

1 0 .1  1 
2 01 
3 004 
4 002 
5 1 0.2 

01 
004 
002 

51. 2.67 x lo6 Stee 1 -Stee 1 
33. 1.73 x lo6 MoS2 -Stee 1 

19 1.0 x lo6 PTFE-Steel 
55. 2.88 x lo6 Steel-Steel 

26 1.36 x lo6 --- 

34. 1.78 x 10’ MoS2-Steel 

19.5 1.02 x lo6 PTFE-Steel 
26.5 1.39 x lo6 --- 
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where 

R is the nominal ball radius o f  the group, and 
AR is the variation in ball radius. 

Based on the data o f  Figure 5 ball race, traction will be small pro- 
vided AV/V > 0.0005. Thus traction (and hence ball-cage forces) will 
be small provided the balls are matched within about 6.25pm (250pin.) 
on the diameter. 

To use the data of Table 3 in bearing dynamics calculations 
it is helpful to use an effective viscosity parameter of the type 
given by Equation 5, based on the slope near zero slip. 
could be expressed: 

Equation 5 

For a bearing the ball race velocity can be written: 

v = 1 [Rp 2 - (RB cos B)'], 
P 

where 

is the angular velocity of the race W R  
R is the pitch radius P 
RB is the ball radius. 

For the bearing of interest: 

= 40.5 mn (1.595 in.) RP 
RB = 6.35 mn (0.25 in.) 
q = 30,000 rpm (3,140 rad/sec) 
8 15' 
po = 1.92 GPa (279,000 psi). 
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If it is assumed that h = 2.5m (1i)ilpin.) Equation 1 1  appears as: 

Despite the uncertainty of the contact zone phenomena, the 
variation in effective viscosities is not excessive. Since viscosity 
can range from 1 to 10 cp in the contact zone for liquid lubricants, 
a factor of 2 or 3 variation from one condition to another is not 
nearly as great as might be expected. The value of h used in the 
computations is unknown, but this parameter is arbitrary. In Equation 
3 in the computation of Cmu the value of h is eliminated. 

Cases 1 and 5 in Table 3 are for steel-versus-steel contacts. 
Cases 2 and 6 would be indicative of a soft film such as an MoS2 coat- 
ing. 

6 

Cases 4 and 8 are an attempt to simulate a PTFE coating in the bearing. 

Cage Stability Predictions with Inputs from the 
Solid Film Traction Analysis 

The BASDAP computer program for prediction o f  cage stability 
was run with four of the effective viscosities presented in Table 
3. 
and alphadot as previously defined) for these effective viscosities. 
Table 4 sumnarizes the results. As lubricant conditions under the 
ball degrades (higher effective viscosities), it becomes more diffi- 
cult for the ball to slip on the race. During ball-cage impacts under 
their conditions, energy of the cage is not absorbed at this interface 
through the lubricant shear mechanism. The result is that the cage 
stability degrades in parallel with a degraded lubricant condition 
at the ball-race interface. 

Figures 6 through 9 are plots of the bearing cage behavior (alpha 
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TABLE 4. BASDAP CAGE STABILITY PREDICTIONS FOR VARIOUS 
VISCOSITIES AT THE BALL-RACE INTERFACE 

Ball -Race 
Friction 

Coef f i c i ent Cage Stab i 1 i ty pavg Simu 1 at i on 

0.1 PTFE -S t ee 1 1.00e+6 Stable 
0.1 MoS2-Stee 1 1.73e+6 Marginally Stable 
0.1 Steel -Steel 2.67e+6 Marginally Stable 
0.2 Steel-Steel 2.88e+6 Comp 1 e te 1 y Un s t ab 1 e 

The Effect o f Shaft SPeed on Caqe Stability 

The effect on cage stability of varying the shaft speed 
was studied at 27,000 to 33,000 rpm. 
the speed parameter was varied was the base case of Tabie 1 with the 
apparent viscosity from Table 3, which gave the most stable plot (appar- 
ent viscosity = 1.0 x 10 cp). 
jumps in stability. The plots of cage motion were slightly more sta- 
ble at the lowest speed. 

The nominal case around which 

6 The results showed no quantitative 

Ball-Cage Forces During Instability 

The ball-cage forces which arise as a result of cage insta- 
bilities were considered in the March, 1984 report on pages 26 and 
27 (2). The analyses given there also apply to the cases given in 
the current task. The instantaneous accelerations that occur when 
the cage is oscillating in an unstable mode result in cage forces 
estimated to be about twice the 5900 N (1300 lb) compressive strength 
of the cage. 
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Frequencies of Cage Motion 

The frequencies of cage motion predicted using the compter 
models are given in Table 5. 

TABLE 5. RANGE OF FREQUENCIES* OF CAGE MOTION DURING INSTABILITIES 

Shaft Speed of Bearing 520 Hz 

Nominal Ball-Group Speed** 220 Hz 

BASDAP Predictions for whirl: 
Stable Bearing 650 Hz 

Marginally Unstable 33300 Hz 
Marginally Stable 2000-6100 HZ 

Kingsbury Cage Whirl Mode Estimate*** 27300 Hz 

*The frequencies listed here are not the mechanical resonances of 
the cage, rather they reflect the response of the ball-cage-race sys- 
tem. 
6 and 7. 

For a complete discussion of cage instability see references 

**Under conditions given in Table 1, as predicted from A. B. Jones 
(1) equation using ball spin calculated by BASDAP computer program 

***Limit estimate (after Kingsbury, reference 8). 

The frequencies of cage motion are well above the frequency 
of the nominal ball group speed. 
nal there is an order of magnitude increase in frequency (6100 Hz). 
If the cage degrades one step farther to marginally unstable, the 
frequency of motion rises to 33,300 Hz. This frequency is the same 
order of magnitude as the upper limit of the cage whirl mode predicted 
from the ball spins and ball pocket clearance (Kingsbury). 

As the cage stability drops to margi- 
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Ball-Caqe Interactions Durinq Stable Operation 

Another major area considered under this task was the ball- 

Figure 10 shows the nomenclature used to describe the bearing 
cage loading both under stable conditions and with ball size varia- 
tions. 
for this discussion. Thirteen representative locations around the 
bearing were used, referred to by ball number. 
the relationship of the externally applied loads to the ball locations. 
At position No. 1 the ball i s  under maximum combined load. 

Figure 10 also shows 

Effect of Radial Load 

Table 6b gives the contact pressures and contact angles 
calculated by BASDAP for the nominal bearing parameters of Table 1. 
An average normal force at the ball-race interface can be calculated 
from the ball contact pressures. This force in conjunction with the 
ball-race friction coefficient determines the maximum value of ball- 
cage force under stable operating conditions. Figure 11 shows the 
maximum value of ball-cage force plotted for several radial loads. 
A similar plot was prepared for several axial loads in reference 1, 
page 25. 

There are several possibilities for estimating the ball- 
race friction coefficient. Traction studies performed at Battelle 
using liquid nitrogen as the lubricant indicated traction coefficients 
of 0.02 to 0.06. These measurements did not include the effect of 
transfer films. Solid film transfer studies at Battelle at room tem- 
perature have indicated a ball-race friction coefficient of 0.15, 
but did not include hydrodynamic film effects. Palmgren (9) indicated 
a friction coefficient of 0.10 for a ball with combined rolling and 
sliding between two flat plates for dry contact. 
tion coefficient of 0.08 for a lubricated contact. The ball-race 
friction coefficient for the HPOTP bearing at cryogenic temperature 
might be estimated from the above data at 0.1. 
cage force that arises from a single ball pushing or lagging under 

He reported a fric- 

In any case, the ball- 
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stable operating conditions is well below the ultimate strength of 
the cage in either tension, 6900 N (1600 lb), or compression, 5900 N 
(1300 lb). 

when a ball excursion about the average ball group speed is sufficient 
to exceed ball-pocket clearance. Figure 12 shows the ball excursions 
under stable operating conditions as calculated by BASDAP for the 
most current data given in Table 1. 
sions due to the contact angle variation will exceed the diametral 
ball-cage clearance, 0.635 mn (0.025 in.), for radial loads greater 
than 3560 N (800 lb). 

The ball-cage impact will occur only under the condition 

Figure 12 shows that the excur- 

Effect of Worn Balls 

The effects of ball size variation on ball excursions and 
ball-cage loads were also examined in this task. As a ball becomes 
increasingly undersized through wear, it will continue to carry load 
up to some limiting point depending on the extent of ball-race deflec- 
tion. With radial wear of 0.0025 mn (0.0001 in.) a single undersized 
ball will carry 82 percent of its normal load. At 0.013 mn (0.0005 in.) 
radial wear the ball carries only 5 percent of its normal load and 
moves to lower contact angles on the outer race. At 0.025 mn (0.001 in.) 
radial wear the worn ball carries none o f  the load. Table 7 shows 
the contact angles and contact pressures assuming one worn ball at 
position No. 1, with a radial wear of 0.025 mn (0.001 in.). The worn 
ball drops to a zero contact angle on the outer race. The contact 
pressure on the outer race is strictly from centrifugal force. The 
centrifugal force at 31,000 rpm is significant, however, and the con- 
tact pressure at the outer race drops only 15 to 20 percent from its 
loaded contact wessure. Ball-cage forces continue to occur as a 
reaction of LOX drag on the ball, Figure 13. 
occur even after the ball is no longer contacting the inner race. 

Ball wear can thus 
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TABLE 7. BEARING PARAMETERS CALCULATED BY BASDAP SHOWING EFFECT 
OF ONE 12.4 mm (0.488 in.) DIAMETER BALL AT POSITION ONE. 
A X I A L  LOAD = 4450 N (1000 l b ) ,  SHAFT SPEED = 31000 rpm, 
RADIAL LOAD = 1330 N (300 l b ) .  

C o n t a c t  A n q l e  C o n t a c t  P r e s s u r e  ( p s i  1 
Inner (Deg)  O u t e r  (Deg)  Inner O u t e r  

0.000 0.000 0.4715E + 01 0.2122E + 06 
29.333 18.765 0.2933E + 06 0.2934E + 06 
30.031 18.196 0.2798E + 06 0.2847E + 06 
31.217 17.181 0.2597E + 06 0.2724E + 06 
32.807 15.746 0.2369E + 06 0.2595E + 06 
34.443 14.195 0.2167E + 06 0.2492E + 06 
35.507 13.148 0.2048E + 06 0.2436E + 06 
35.507 13.148 0.2048E + 06 0.2436E + 06 
34.443 14.195 0.2167E + 06 0.2492E + 06 
32.807 15.746 0.2369E + 06 0.2595E + 06 
31.217 17.181 0.2597E + 06 0.2724E + 06 
30.031 18.196 0.2798E + 06 0.2847E + 06 
29.333 18.765 0.2933E + 06 0.2934E + 06 
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f 5 53 N (12 Ib) 

Fluid drag, 2 53 N (12 Ib) Ball-cage force, 53N (12 Ib) 
(estimated from horsepower 
requirement for churning and 
fluid drag) 

(calculated with 
friction coefficient=0.3) 

819 N (184 Ib) (calculated 
from contact pressure) 

F IGURE 13. SCENARIO OF FORCES ON A BALL THAT HAS 
DROPPED OUT OF CONTACT DUE TO WEAR 
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EFFECT OF CYCLIC LOADING ON CAGE STRENGTH 

Dynamic cage fo rces  dur ing  i n s t a b i l i t y  and excessive b a l l  
speed v a r i a t i o n  apply c y c l i c  fo rces  t o  the  cage. Measurements were 
needed of the e f f e c t  o f  c y c l i c  loads on cage s t rength  t o  assess the  
p o t e n t i a l  d e t e r i o r a t i o n  o f  the  cage from such c y c l i c  loads. 
of ac tua l  unused cages were subjected t o  c y c l i c  t e n s i l e  fo rces  and 
then p u l l e d  t o  t e n s i l e  f a i l u r e .  A comparison was made w i t h  the r e s u l t s  
of t e n s i l e  t e s t s  on i d e n t i c a l  cage sect ions no t  subjected t o  c y c l i c  
fo rces  . 

Sections 

Cage Loadinq Procedure 

Four unused cages removed from new bearings t h a t  were r e j e c t e d  
because o f  cor ros ion  damage t o  the  races dur ing  storage were used 
f o r  t he  study. The cages were sectioned by c u t t i n g  every f o u r t h  b a l l  
pocket t o  produce th ree  specimens w i t h  two b a l l  pockets i n t a c t  and 
a f o u r t h  specimen w i t h  th ree  b a l l  pockets. The specimens were mounted 
as shown schematical ly i n  Figure 14. The rad ius  o f  the  support base 
matched t h a t  o f  the  inner rad ius  o f  the cage t o  avoid bending. The 
anchor p i n  was pos i t i oned  so t h a t  t he  movable p i n  was p ivo ted  a t  t h e  
p o s i t i o n  o f  the  cage center so t h a t  the  fo rces  appl ied t o  the  cage 
would d i r e c t l y  s imulate those app l ied  i n  tension by the  b a l l s .  
diameter o f  bo th  the  anchor p i n  and the  movable p i n  was 12.7 mn (0.500 in.)  
t o  match t h a t  o f  t he  b a l l s .  

The specimen support f i x t u r e  shown i n  Figure 13 was assembled 
f o r  d i r e c t  mounting i n  a conventional 44,000 N (10 K I P )  f a t i g u e  t e s t -  
i n g  machine. The specimen f i x t u r e  was designed so t h a t  it could be 
submerged i n t o  a dewar f lask  o f  l i q u i d  ni t rogen. 
was detected and c o n t r o l l e d  by thermocouples placed t o  ma in ta in  a 
minimum depth o f  127 mn (5  in.) above the  cage specimen. 
support base was connected t o  the  hyd rau l i c  actuator o f  the  f a t i g u e  
machine. 

machine t o  apply and de tec t  t he  opposing f o r c e  on the  cage. 

The 

The n i t rogen  l e v e l  

The specimen 

The movable p i n  was connected t o  the  load c e l l  o f  the  f a t i g u e  
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Cyclic 
load 
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Mova ble 
Pin \ 

Anchor 

To 
load 
cell 

I /  ,Slot for 
mow ble 
pin 

‘Pivot at cage 
center 

‘Support base matching 
cage curvature 

FIGURE 14. EXPERIMENTAL ARRANGEMENT FOR EVALUATING THE EFFECT OF 
CYCLIC LOADING ON SECTIONS OF CAGE FROM THE SSME HPOTP 
BEAR I NGS 
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The fatigue machine was programed to run in load control, 
which sinusoidally varies the preselected loads from the minimum to 
maximum levels at whatever deflection is required. The tests were 
restricted to tensile loads with the minimum set at 133 N (30 lbs) 
to avoid motion caused by the lash in the system. A frequency of 
6 to 7 Hz was found to be the maximum attainable without inducing 
undesirable secondary vibrations. 

Results of Cyclic Loadinq Tests 

The results of the cyclic loading tests are presented in 
Table 8. The average ultimate tensile strength measured on three 
baseline (no cyclic loading) specimens was 4760 N (1070 lbs). An 
attempt to test a cyclically loaded specimen at approximately 47 per- 
cent of this average strength, 2220 N (500 lbs), resulted in a failure 
at 11,390 cycles. The remaining tests were run with cyclic-load maxi- 
mums of 1330 N (300 lbs) and 1780 N (400 lbs). 
spond to 28 percent and 37 percent of the average ultimate tensile 
strength, respectively. Three of the four specimens tested with a 
cyclic-load maximum of 1330 N (300 lbs) for 125,000 cycles showed 
an increase in subsequent ultimate tensi le strength. Specimens tested 
with a cyclic-load maximum of 1780 N (400 lbs) for 125,000 cycles 
showed a decreased in subsequent ultimate tensile strength. These 
changes represent an increase of 11 percent and a decrease in 8 per- 
cent of the baseline strength, respectively. 

strength of the composite. 
the load is distributed evenly across the stressed section, the load 
in a composite is applied to the individual fibers. 
their orientation, straightness, and bonding to the matrix, the result- 
ing stress will vary widely from fiber to fiber. Therefore, failure 

These levels corre- 

The glass fibers of the Armalon provide the primary tensile 
Unlike a homogeneous material in which 

Depending upon 
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I 
' I I '  
I 
1 TABLE 8. RESULTS OF CYCLIC TENSILE LOAD TESTS 

ON CAGE SPECIMENS AT -196 C (-320 F)  

Cyclic Load 
Maximum U1 timate Change Change 

for Tensile from from 
Baseline, Specimen 125,000 Cycles, Strength , Baseline, 

Number N(1bs) N( lbs) N( lbs) Percent 
2 -3 
4-3 
5-1 

2 -4 
4 -4 
5 -2 
5 -3 

3 -5 
4 -5 
5 -4 

2 -5 

-- 4840 (1088) -- 
-- 4170 (938) -- 
-- 5280 (1187) -- 

Avg 4760 (1070) 

1330 (300) 
1330 (300) 
1330 (300) 
1330 (300) 

1780 (400) 
1780 (400) 
1780 (400) 

2220 (500)* 

5400 (1213) 
4170 (938) 
5890 (1325) 
5630 (12651 

Avg 5270 (1190) 

4060 (913) 
4340 (975) 
4730 (1063) 

Avg 4370 (980) 

620 (140) 

1130 (255) 
870 (195) 
510 (120) 

-590 (-132) 

-700 (-157) 
-420 (-95) 
-30 (-7) 

-384 ( -86) 

+13 
-12 
+24 
+18 
+11 
- 

-15 
-9 
-0.7 - 
-a 

*Specimen failed at 11,390 cycles 
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during an ultimate strength tensile test is progressive as the highly 
stressed fibers fracture and the load is shifted to the fibers pre- 
viously having lower stress levels. 
at 1330 N (300 lbs) permitted movement within the matrix to improve 
the load sharing among the fibers so that the subsequent tensile test 
resulted in a higher ultimate strength. 
loads of 1780 N (400 lbs) and 2220 N (500 lbs) resulted in decreases 
in the ultimate tensile strength or early fracture. Apparently loads 
at these levels cause fracture of some of the principal load-carrying 
fibers during the cycling. On this basis, the safe long-term working 
tensile loads for the cage are on the order of no more than 1330 N 
(300 lbs). 

Apparently the cyclic loading 

In contrast, the tests at 
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MEASUREMENT OF POISSON'S RATIO 

Poisson's ratio measurements were performed using a rectangu- 
lar bar (25.4m ( 1  in.) long by 635 m (0.25 in.) square) cut from 
an Armalon cylinder, with the long dimension of the bar aligned par- 
allel to the cylinder axis. All surfaces across the plies were ground 
flat and parallel. 
were affixed to the bar, one pair on the outer surface, parallel to 
the plies, and the other on a through-wall surface, across the plies. 
Each pair consisted of one gage oriented in the axial direction of 
the bar and one oriented normal to the axis. The bar was loaded axi- 
ally in compression with the output of each gage pair recorded on 
a separate x-y recorder. 
temperature for both surfaces. 
nitrogen temperature, but the para1 lel-to-ply gages survived. 

Two pairs of electric-resistance strain gages 

Poisson's ratio data were obtained at room 
The across-ply gages failed at liquid 

The results were as follows: 

Temperature, deg C (F) 
20 (68) 

-196 (-321) 

Poisson's Ratio 
With-Ply Across -P ly 

0.15 0.68 
0.20 ---- 

The across-ply value is quite high, presumably due to relatively weak 
bonding which allows the plies to spread apart easily in compression. 
This effect may not be nearly as pronounced at low temperatures, where 
the bonding may be stronger. 

MEASURING UNITS 

A1 1 of the calculations and measurements were performed 
using the English system of units. The SI units appearing in the 
report were converted from the English units. 
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Analysis of Traction Forces in a 
Precision Traction Drive 
A theory for the shear stress between a rough elastic cylinder and a cylinder with a 
soft layer has been developed. The theory is based on a Fourier transform approach 
for the elasticity equations coupled with surface deflection equations for transient 
contacts. For thick layers ( h  > .001 in. ) the shear stress on the surface approaches 
the shear of the layer alone. The elastic shear deflection ( - 100 pin. ) as a result of 
the tangential load is signifcant and increases if a surface layer such as a thin 
coating is added to one or both cylinders. The predicted interfacial shear stresses are 
considerably altered by surface roughness on uncoated surfaces and these effects 
are ameliorated by the addition of a thin soft surface coating. 

Introduction 
Two critical aspects of a precision machine are linear 

location of one part relative to another and smooth motion 
between limits. One method of achieving this result [ 1, 21 is to 
use a traction drive on the slideway as illustrated in Fig. 1. 
Positioning accuracy below the microinch level is typically 
required. When accuracies of this level are involved, virtually 
all factors which affect motion must be considered in order to 
minimize errors in the system. One such factor is the shear 
deformation of the drive system, especially the elasticity of 
the traction interface. The elasticity is affected by many 
factors, including the Young's modulus of the traction 
components, surface layers on the rollers (such as solid film 
layers) and the roughness of the rollers and slideway. 

The most extensive work reported on the analysis of the 
traction interface is by Kalker [3,4]. Kalker traces the traction 
interface between two extremes: the Cattaneo [SI problem and 
the Carter [a] problem. The Cattaneo problem occurs when a 
cylinder is rotated slightly, while in contact with a stationary 
surface. The Carter problem occurs when both the cylinder 
and the mating surface are moving but at slightly different 
speeds. Kalker's study traces the traction forces through the 
transients between the two extremes. 

Bentall and Johnson [7] analyzed the slip between two 
dissimilar cylinders in rolling contact. This research allowed 
for tangential deflections due to microslip. Barber [8] con- 
ducted research similar to Kalker's. only he analyzed three- 
dimensional contacts of rollers under misalignment. Poritsky 
191 derived basic equations for cylinders in contact and 
discussed the problem of rough surfaces. Krause and Senuma 
[ 101 did experimental studies with rollers which developed 
surface corrugations. The surface corrugations notably af- 
fected the traction behavior of the cylinders. 

The work presented here is an extension of the Kalker and 
Poritsky work with allowances for surface layers. The surface 
layer algorithm is developed from the work of Sneddon [ I  I], 
and Gupta and Walowit [12]. 

Contributed by the Tribology Division O f  THE AMERICAN % C l E T Y  OF 
MECHANtCM ENGINEERS for presentation at the ASMEIASLE Joint Lubrica- 
tion Conference, Atlanta, Ga.. October 8-10, 1985. Manuscript received by the 
Tribology Division, April 19, 1985. Paper No. 85-Trib-45. 

Copies will be available until January 1987. 
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Fig. 1 Illustration of troctlon control syslom for precision engineering 

Approach 
The same general approach used for the normal stress 

analysis [13] can be used for the shear stress computations. As 
will be shown subsequently, the matrix equation is almost 
identical to that developed by Gupta-Walowit for the normal 
stress computations. That is the deformation equations can be 
put in the matrix form: 

where C i s  the matrix equation with elements c,, that relate the 
tangential deflection, I, to the tangential forces. As with the 
normal stress equations, a relationship between point-loads 
and point stresses can be developed. 

cF= I (1) 

Matrix Coefficients 
For a solid body, Poritsky derived a similar relationship for 

load-deflection coefficients as for normal stress coefficients, 
that is 

4( 1 - v2)ln 
XE 

(2) cv = - Irl 

Discussion on this paper will be accepted at ASME Headquarters until December 9, 1985 



where z =  Is1 Y '  = ( 2 -  v ) / ( l -  Y )  
Y "  = v / ( l  - v )  

@ = ( I  - Y ~ ' ) E I / ( I  - Y I  ')E, 
y = ( l  - v z 2 ) E , / ( I  - V I  ')E' i = e x p ( z )  

vz - where r is the distance between a point tangential load and the 
corresponding tangential deflections. As with the normal 
stress equations, a relationship between point loads and 
stresses over a small region is: 

where 7 is the surface shear stress acting over a distance dx (or 
5c in finite terminology). Then 

t-i 
F, = Tdx (3) 

I 
cIJ = -4(1-v2)  *E j t, -&'' InIx,-xldx (4) VI 

I 
r, +. A\ '2 - 

Fig. 2 Slippage in the contact zone which allows a solution to be found when x, = x,. 
An expression has been develoepd for the influence- 

coefficient matrix for shear stresses in a layered solid (see 
Appendix A). The solution (assuming no normal pressure on 
the surface) can be written as: 

c,,= 9 [I,'" 2(B, - D l ) ( c o s s ~ - c o s s ) d s  

and the coefficients BI and DI are computed using the matrix 
Of Table AI. This equation is identical to Poritsky's for- 
mulation for so = 0. 

( 5 )  Tangential Deflection Equations 
Kalker has developed the following expression for the 

+ zs, cos s r-cos s 
ds-2 p In f] 

S 

where { = I r l / h  

- .  
surface deflections: 

1 a€ a€ 
V ( x , t ) = c R ( t ) + - -  + - v at ax 

Nomenclature 
A I = constant Table AI 

b = half width of contact 
B ,  = constant for Table AI 
CI = constant for Table A1 
D, = constant for Table A1 

E = Young'smodulus 
f = coefficient of friction under 

slip conditions cf= 0.3) 
P = point tangential force 

F, = tractiveforce 

(1 + v )  
G, = shear modulus G, = E/2 

h = thickness of layer 
p = pressure 

ph = maximum Hertz pressure 
pmax = maximum contact pressure 

r = distance from point of load 
application to deflection 
Ix, - x, I 

2 

R I  .R2 = cylinder radii 
1 1 1  - = - + -  
R Rl R2 

s = variable derived from 
Fourier transform 

so = equation(5) 
I = exp(z) 
f = time 
u = deformation in x direction 
u = deformation in y direction 
V = velocity of a contact point 

x = c o o r d i n a t e  d i rec t ion  
tangential to surface 

y = c o o r d i n a t e  d i rec t ion  
normal to surface 

A V  = slipvelocity 

y = ratio of E(layer)/E(sub- 

/3 = ratio of E(layer)/E(in- 
strate) 

dentor) . 
6, = Kroneckerdelta 

E = t angent ia l  def lec t ion  
relative to a fixed point 

{ = r / h  
= y / h  

Y = Poisson'sratio 
u' = (2-u)/(l-u) 
V N  = v/(l - u )  
x = normal stress in tangential 

direction 
y = normal stress in radial 

direction 
z = shear stress 
8 = Airy's stress function 

Transactions of the ASME 
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Fig. 3 Contact zone shear stress distribution (no layer) 
b = 0.25 mm (0.01 in.) F ,  / fw  ' = 0.7 
R = 9.4 mm (0.37 in.) 

where 
e = tangential elastic deflection (of both surfaces) for a 

V =  velocity of points on the surfaces 

x = x  position 
f = time 

point on the surface 

C, =creepage 

Kalker's expression was designed for use in analytical ex- 
pressions. For numerical computations, i t  is desirable to 
develop a somewhat different expression. 

Assume that the lower surface in Fig. 2 is moving slower 
(velocity = V I )  than the upper surface (velocity = V z ) ;  and, 
for the first step in the iteration, that no slip occurs in the 
interface. Based on these assumptions the deflection of a 
point in the interface at a new time ( t  + At) can be written 

e (x+  V A t , l + A f )  = c ( x . f )  + A V A f  (7) 
Note the point itself has advanced V A t and the deflection has 
increased by an amount AV At.  If the left side of this ex- 
pression is expanded in a Taylor series we have 

or 

where 
A V =  Vz - VI 
v= V I  

This expression is consistent with Kalker's equation. For the 
steady state situation, equation (9) becomes 

If V ,  = O  in equation (9), the horizontal deformation becomes: 

To compute the elastic deflections at any time the deflection 
a t  a previous time must be known. Many of the calculations 
were performed using equation ( 1  1 )  for the tangential 
deflection at f = 0. The time transient problem when both 
cylinders move was analyzed using equation (7). 

c = Vz, + CR2 ' (1 1) 

Journal of Tribology 

Solution Technique 

equation (5) in the form (see Appendix) 
The method of solution involves solving equation ( I )  uith 

n 

( c,, - ~ O J  ) 7, &' = I ( ) (12 )  

where e,(O) is the assumed initial deflection relative 10 a fixed 
point (xo = - lob). For subsequent times equation (7) is used 
with A V A t  being a constant that is added to each time Ftep to 
produce a given traction. 

In the computations the coefficients c , ~  were set and the 
shear stress computed by a matrix solution of equation (12 ) .  
At some points 

wherefis a coefficient of friction and pJ is the local pressure 
computed using the technique given in reference [I2 and 131. 
For these points the matrix was adjusted as follows: 

J =  I 

' 1  >f'PJ 

j f  are the points where 7J > fp,. The essential size of the 
matrix will be reduced by one row for each value of j , .  The 
computations involved a simple iteration starting with a full 
matrix and subsequently reducing the matirx for each value of 
7J > fpJ until further iterations produced no changes. 

Discussion 
Figure 3 illustrates the shear stress at the interface for the 

case of a stationary lower cylinder ( V t / b  = 0) and for a series 
of relative slip values (Vt lb  > 0). The slip values are ex- 
pressed in terms of the half width, 6 .  I f  Vt /b  = 0.8, a point 
on the upper cylinder has moved a distance equivalent to 80 
percent of the half-width of contact between the cylinders. 

For the case of a stationary lower disk (analogous to the 
Cattaneo problem), the shear stresses are the lowest in the 
center of contact and rise toward the edges. This rise is due to 
the contribution of each element to support the shear 
deformation outside the contact region. The rise in shear 
stress is limited at x / b  P f 0.7 by slip between the cylinder 
surfaces; that is, the shear stress becomes equal to the friction 
coefficient times the normal stress. Thus, the shear stress 
curve has the same shape as the normal stress distribution 
where slip is present. For this example the horizontal load was 
105 N/mm (600 Iblin.), and to produce this force, the upper 
cylinder was rotated 2 x rad (the upper surface moved 2 

Continued rotation of the upper cylinder would produce 
rotation of the lower disk because the loading was assumed to 
remain constant (analogous to Carter problem). Different 
values of the upper cylinder motion are also illustrated in Fig. 
3. For the largest rotation of the upper cylinder shown in Fig. 
3 ( V i / b  = 1.2, corresponding to 3.2 x IO.? rad (about 2 de& 
of rotation), a point on the upper cylinder has moved a total 
of 2.5 pm from a point on the lower cylinder which was 
adjacent at no load. This means that the driving cylinder will 
rotate 2.7 x 10.' rad more than the driven cylinder for an 
average rotation of 3.2 x IO-? rad against a load of 600 Ib. 

One purpose of the analytical traction model was to 

rm). 

3 
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Fig. 4 Contact zone shear stress distribution (0.01 in. layer) 
Load = 543 Nlmm (3099 Iblin.) b = .89 mm (.035 in.) 

t P 2.5 *rn (1 00 pin.) 

F ,  = 14.5 Nlmm (83 Iblin.) R = 9.44 mm (.37 in.) 
E ,  I 2 GPa (290 ksl) p h  = .U GPa (64 ksi) 

evalaute the role of surface layers on traction drive per- 
formance. Figures 4 to 6 show the shear stress distribution for 
the condition of a uniform tangential displacement of 2.5 pm 
but with a soft surface layer (E = 2 GPa) on one of the 
cylinders. Surface layer thicknesses of 250 pm, 25 pm and 2.5 
pm are illustrated. 

All curves show peak shear stresses at the edges of contact 
and reasonably uniform shear stress in the center. For the 
thicker layers this center shear stress should approach the 
shearing of a soft layer of known thickness a known amount. 
That is: 

I = G, 4 = G, elh (14) 
where 

7 is the shear strain 
G, is the shear modulus of the layer (G,” = E/2(1+ v )  = 
780 MPa) 

For the 250 pm layer shown in Fig. 4, the predicted shear 
stress using equation 14 is 7.8 MPa (1.125 ksi). This predicted 
stress is consistent with the stress near the center of contact of 
Fig. 4. At the edges of the contact (x  = b) the stress rises 
considerably above this level to compensate for the forces 
required to tangentially deflect the layer outside of the contact 
region. Very near the edges, the shear stress is limited by the 
coefficient of friction times the normal pressure. 

In Fig. 5 the predicted shear stress using equation (14) 
would be 78 MPa (1 1.25 ksi). This stress is higher than the 
stress at the center of contact given in Fig. 5 .  That is. for thin 
films. the shear stresses tend to be high enough to deflect the 
substrate as well as the surface. When the substrate is 
deflected this deflection must be subtracted from e in com- 
puting the surface shear. For very thin films (h = 2.5 pm) as 
shown in Fig. 6 the center shear stress is considerably lower 
than predicted by shearing of the layer alone. For this case the 
equation (14) shear stress would be 780 MPa (112.5 ksi) or 
about four times that given in Fig. 6. Clearly then the 
evaluation of this surface films requires the use of com- 
prehensive theories and cannot be achieved by simple 
analyses. 

Figures 7 and 8 illustrate the comparison between a layered 
and a nonlayered body. For the conditions given here a 
surface “wind-up’’ of 2.5 pm produces a tangential load of 
105 N/mm when the soft layer (E = 2 GPa) is in place. If 
there were no layer, 105 N/mm could be obtained with a 
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Distance F r m  Contoct Center, x/b 

Contact zone shear stmss distribution (lo00 in. layer) 
Load = 490 Nlmm (2800 Iblin.) b P .44 mm (.0173 in.) 

Ft 3: 45 Nlmm (258 Iblin.) 
€=2GPa(290ksi) ph =.8GPa(117ksi) 
t=2.5prn(100x106 Fin.) 

R = 9.4 (.37 in.) 

000 - 0  -08 -01 -04 -02 0 a2 0 4  OS 0 0  IO 

Distance From Contoct Center, x/b 

Fig. 6 Contact zone shear stress distribution (100 p In. layer) 
b=.29mm(.0115in.) Loads544 Nlmm(3110Iblin.) 

€ P 2 GPa (290 ksi) 
6 = 2.5 prn (100 pin.) 

F , I 103 Nlmm (591 Iblin.) R = 9.4 mm (.37 in.) 
ph = 1.28 GPa (187 ksi) 

“wind-up” of 2 pm, as indicated in Fig. 8. The presence of the 
soft layer also increases the amount of “wind-up” required to 
move the driven cylinder against the load. For example, for 
the bare cylinder (Fig. 8) a “wind-up’’ of 2.5 pm occurs in 
traversing through 1.2 half widths 0.3 mm). For the layered 
cylinder (Fig. 3) a “wind-up” of 3.5 pm occurs in traversing 
the same distance. 

For the above examples the surface of the drive cylinder 
would move 2.5 pm farther than the driven cylinder over 0.3 
mm traverse. If one of the cylinders contained a soft layer the 
differential traverse would be increased by about 1 pm. In a 
precision control system, all errors must be minimized to 
reduce the level of error compensation required of the control 
system. Based on error minimization alone then, it would 
seem that bare cylinders would be superior to coated cylin- 
ders. However, when surface roughness factors are included 
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I,,I,I,,,,I 50 -w -06 -a4 -a2 o a2 04 os on io” 

C i s m e  F m  Contoci Canter, x/b 

Fig. 9 Shear stress distribution with 1 p in. CLA surface roughness (no 
Distance From CmtOCt CMtN, x/b iayer) 

b .25 mm (.01 In.) 

E = 200 GPO (29M PSI) 
= 1.9 pm (75 pin.) 

Load = 839 Nlmm (3649 iblin.) 
R ~ 9 . 4  mm (.37 in.) 

pmax = 2 GPa (295 ksi) 
Fig. 7 Contact zono shear stress distribution (100 p in. layer) 

Load = 544 Nlmm (3110 iblin.) 
F ,  = 105 Nlmm (800 iblin.) 

b=.29mm(.0115in.) 
F ,  = 105 Nlmm(600 iblin.) R = 9.4 mm (.37 in.) 
D = 2 GPO (290 ksi) ph = 1.28 GPO (187 ksi) 

W-  

x) 

Dtstoncc F m  Contat Center, xlb 

Fig. 8 Contact zone shoar stress distribution (no layer) 
b = .25 mm (.01 in.) Load = 607 Nlmm (3470 Win.) 

F ,  = 105 Nlmm (600 iblin.) R = 9.4 mm (.37 in.) 
E = 200 GPa (29M psi) ph 3 1.5 GPa (219 ksi) 

in the shear stress examinations the value of a surface layer 
becomes clear. Figure 9 indicates the shape of the shear stress 
distribution for a stationary lower cylinder without a layer but 
with a 0.025 p n  center line average (cla) surface roughness. 
The increased deformations due to the surface roughness 
produces peaks in the shear stress distribution in the slip 
regions ( x l b  > f 0.7). The addition of a soft, thin layer (2.5 
pm) cushions the surface asperities and produces a smoother 
shear stress curve as indicated in Fig. 10. Based on the results 
of Figs. 9 and 10. it would be difficult to compensate for the 
erratic stresses for a nonlayered cylinder. However, it is quite 
reasonable to attempt to predict the stresses where a layer is 
present. 

4% 

4w I 350 
Dstonce From Contacl Center. x/b 

Fig. 10 Shear stress distribution with 1 p In. CLA surface roughness 
(100 f i  in. layer) 

Load=545 Nlmm(3114iblin.) 
R = 9.4 mm (.37 in.) 

pmax = 1.33 GPa (195 ksi) 

b~.29mm(.0115in.) 

E = 2 GPa (29 ksi) 
t = 2.5 pm (1 00 pm) 

F ,  3 100 Nlmm (601 Iblin.) 

Conclusions 
Traction drive systems represent reasonable devices for 

traversing slideways in precision machining. However, one 
inherent problem with traction is that the traction interface 
must incur sizable elastic “wind-up” before the driven 
cylinder will move against a given load. For one specific case 
analyzed the “wind-up” was on the order of 2 pm for a 105 
N/mm traction load. The amount of “wind-up” increased as 
the driven cylinder moved. 

In order to achieve precision control in a traction drive, 
some type of compensation algorithm must be employed to 
eliminate “wind-up” errors. It would be expected that a 
compensation algorithm of the type presented herein could be 
employed provided good reproducibility of the traction in- 
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terface could be achieved. One problem in reproducibility is 
surface roughness. Even small levels of roughness (0.025 pm 
cla) can cause wild variations in interfacial shear stresses. A 
thin coating such as a 2.5 pm molybdenum disulfide coating 
can absorb the roughness and create a much smoother (and 
hence more reproducible) shear stress distribution. The 
presence of the soft layer would cause a slight (-0.6 pm) 
increase in “wind-up” but presumably the “wind-up” would 
be predictable. 
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A P P E N D I X  

Development of Shear-Deflection Equations 
Fourier Transform Equation. The objective of this 

analysis is to develop a relationship between surface shear 
stresses and tangential deflections in absence of applied 
normal stresses at the boundary. The analyses are based on 
elasticity theory using the Fourier transform approach given 
by Sneddon and Gupta and Walowit. These equations are 
given in the following form (see Fig. AI). 

Fig. A1 Coordinate system lor shear stress analysis 

G=] ~ qexp( iw)dx 
- O D  

Eliminating 9 from the above two- equations and solving the 
resulting differential equation in G, we get a solution of the 
form 

G=(A+By)exp(-  Iwly)+(C+Dy)exp(Iwly) (A4) 
where A, B, C,  and D are constants of integration to be 
evaluated at the boundary. 

Boundary Conditions 
The boundary conditions for the traction analysis are: 
I )  boundary stress is the applied shear stress 
2) stress and deflections are continuous across the layer 

interface 
3) stress goes to zero at y- OD; 

at the surface, 

7.ry= - ?! = + -!- Im iw-exp(-iwx)dw dG (A6) axay 2~ -- dy 

dG 
dY 

If- is an odd function, Sneddon shows that: 

Based on Fourier Transform theory; 
m so  sxycoswxdx 

dG 
a- = - 

dY 
at the surfacey = 0 zXu = -so .  Letting 70 be defined over the 
interval Ax and letting 70 = ]/Ax then lim we have 

Ir-0  

d2G 

(A9) 

Letting s = ha.  G = G / h 2 ,  q = y/h,  the first boundary 
condition becomes 

I -exp(-iwx)dw dG 
dY 

a29  

ay2 2* -- dy2 w- = 1 
ox= - = - 

7,rlv = - - - (AI)  

1 -v’ d2G d w  Also for the case of no normal stress on the surface 

u= [v+ (&)o2G]iexp(-iwr) - w G=O ( A l l )  
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The remaining boundary conditions can be met using the 
same approach as used for the normal stress conditions [IZ). 
These conditions yield the matrix given in Table AI. 
Green’s Function for Shear 

can be expressed as: 
The tangential deflection on the surface from equation (Al) 

where 

-2(Bl -Dl)s  ( ~ 1 4 )  d2 G 
dq’ 
-= 

The Green’s function can be written with reference to an  
arbitrary displacement V, at l= 1 

U - U I  = - ’ - ” [ 1 2(BI KE o 

ds-2Sln!:] 
cos 5!:- cos 5 

5 
- DI 15 

Journal of Tribology 

It can be shown, using the matrix in Table AI that for larger 
values of 5 ,  (B, - D l )  - 115. Equation (A15) can be ex- 
pressed as two integrals (0 < 5 < so) and (50 < s). as given in 
the text. 
If we let 

c y = u - u l  

then this equation corresponds to equation ( 5 )  in the text. 
Because the shear deformation is calculated as a relative 

displacement. a reference point must be selected. The 
displacements calculated from equation (A1 5 )  becomes small 
for large r; therefore a reasonable assumption for the 
reference point is 5 contact widths (x  = -10b). Then the 
relative tangential deflection ( E , )  is: 

assuming i = 0 is the reference point. 
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